

УДК 624.13

АНАЛИЗ ВЗАИМОДЕЙСТВИЯ КОНСТРУКЦИИ С ПРОСАДОЧНЫМ ГРУНТОМ ОСНОВАНИЯ

Филоненко И. Н.

Донской государственный технический университет, Академия строительства и архитектуры, Ростов-на-Дону, Российская Ферерация

filonenko-irina@yandex.ru

В статье рассмотрено взаимодействие конструкции с просадочным грунтом основания в естественном состоянии и после замачивания на примере теоретической модели. Даны рекомендации по усилению грунтового основания.

Ключевые слова: усиление грунта, просадочное основание, столбчатый фундамент, цементация грунтов, армирование грунтов, армоэлементы.

UDC 624.13

INTERACTION ANALYSIS OF CONSTRUCTIONS AND SUBSIDING SOIL

Filonenko I. N.

Don State Technical University, Rostov-on-Don, Russian Federation filonenko-irina@yandex.ru

The article considers the construction and subsiding ground interaction before and after soaking on the example of a theoretical model. The recommendations are given for strengthening the ground base.

Keywords: soil strengthening, subsiding soil, pier foundation, soil cementation, soil reinforcement, reinforcing element.

Введение. Как известно, расчет влияния конструкции на основание имеет немаловажное значение на начальных этапах проектирования, особенно, если основание сложено просадочными грунтами. Отличительная особенность просадочных грунтов заключается в их способности в напряженном состоянии от собственного веса или внешней нагрузки от конструкции при повышении влажности (замачивании) давать дополнительные осадки, называемые просадками [1].

К просадочным грунтам относятся лессы, лессовидные супеси, суглинки и глины, некоторые виды покровных суглинков и супесей, а также, в отдельных случаях, мелкие и пылеватые пески с повышенной структурной прочностью, насыпные глинистые грунты, отходы промышленных производств (колосниковая пыль, зола и т. п.), пепловые отложения и другие [2].

В данной статье рассмотрена теоретическая модель влияния двухпролетного трехэтажного здания на просадочный грунт основания до замачивания и после. Расчеты выполнены в программном комплексе Лира-САПР [3].

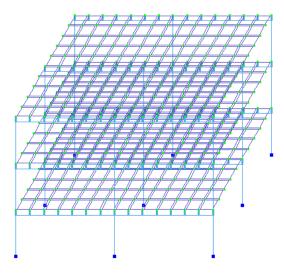


Рис. 1. Схема здания

Исходные данные. В данной модели запроектировано двухпролетное трехэтажное здание. Схема здания приведена на рис. 1.

Произведены расчеты на взаимодействие конструкции и грунтового основания, сложенного просадочными грунтами, до замачивания и после. В качестве фундаментов выбран столбчатый фундамент сечением 2×2 м [1]. Перекрытия заданы железобетонной монолитной плитой толщиной 20 см. Колонны железобетонные 40×40 см [4]. Для данной модели задано два инженерногеологических элемента. Расчетные данные по каждому из них приведены в таблице 1.

Таблица 1 Физико-механические свойства замоделированного массива грунта

ЕЛИ	Н, м	E^{i}_{sl} , M Π a	E ^I _{sl,sat} , ΜΠα	γ ^I _{sl} , κΗ/м ³	γ ^I _{sl,sat} , κH/м ³	Коэф. Пуассона
ИГЭ-1	5	10	4	17	20	0,3
ИГЭ-2	5	30	-	19	-	0,3

Взаимодействие конструкции с просадочным грунтом в естественном состоянии. В первом варианте расчета максимальные вертикальные перемещения не превышают 20,1 мм. Верхние слои просадочного грунта в пределах 2,5 м имеют максимальные вертикальные перемещения на 10,1 мм. Изополя перемещений по оси Z представлены на рис. 2.

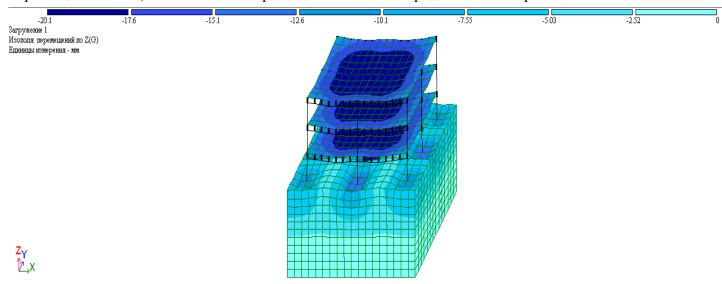


Рис. 2. Изополя перемещений по оси Z (до замачивания)

Взаимодействие конструкции с просадочным грунтом в замоченном состоянии. Просадка грунта — это сложный физико-химический процесс, суть которого заключается в уплотнении грунта за счет перемещения и более плотной укладки отдельных частиц грунта. Благодаря этому понижается общая пористость грунта до состояния, которое соотносимо с действующим давлением.

Во втором варианте (замачивание грунта под половиной здания) максимальные вертикальные перемещения составляют порядка 60 мм. Также образуется крен здания на замоченном участке грунта. Изополя перемещений по оси Z представлены на рис. 3.

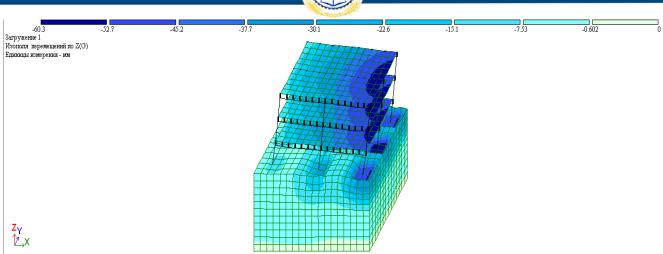


Рис. 3. Изополя перемещений по оси Z (после замачивания)

Заключение. Поскольку невозможно определить, где именно произойдет замачивание, во избежание неравномерных просадок здания в качестве усиления грунтового основания целесообразно использование грунтобетонных или бетонных армоэлементов [5].

Следует учесть, что размеры и несущая способность армированного массива грунта определяются с учетом дополнительных нагрузок от сил отрицательного трения, возникающих при просадке окружающих его грунтов от собственного веса.

Библиографический список.

- 1. СП 22.13330.2016 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83 [электронный ресурс] / Электронный фонд правовой и нормативнотехнической документации. Режим доступа: http://docs.cntd.ru/document/456054206 (дата обращения: 20.03.2018).
- 2. ГОСТ 25100-201. Грунты. Классификация / Межгосударственный совет по стандартизации, метрологии и сертификации. Москва: Стандартинформ, 2013. 288 с.
- 3. Программный комплекс ЛИРА САПР: свидетельство о государственной регистрации программ для ЭВМ 2014618855 / Общество с ограниченной ответственностью «ЛИРА САПР» (UA). №2014616347. Дата регистрации 29.08.2014.
- 4. СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003 (с Изменениями N 1, 2, 3) [электронный ресурс] / Электронный ресурс правовой и нормативно-технической документации. Режим доступа: http://docs.cntd.ru/document/1200095246 (дата обращения 20.03.2018).
- 5. СП 21.13330.2012 Здания и сооружения на подрабатываемых территориях и просадочных грунтах. Актуализированная редакция СНиП 2.01.09-91 (с Изменением N 1) [электронный ресурс] / Электронный ресурс правовой и нормативно-технической документации. Режим доступа: http://docs.cntd.ru/document/1200094386 (дата обращения 20.03.2018).