ТЕХНИЧЕСКИЕ НАУКИ

УДК 631.1

Применение искусственного интеллекта и мобильных технологий для эффективного мониторинга урожайности зерновых культур

Д.А. Боровой, М.В. Ступина, И.В. Садовая

Донской государственный технический университет, г. Ростов-на-Дону, Российская Федерация

Аннотация

Исследована проблема оценки урожайности зерновых культур с использованием мобильных технологий. Проанализированы рост потребления зерна и повышенный интерес к методам оценки урожайности зерновых культур. Проведен обзор методов машинного обучения для учета урожайности, приведены примеры использования глубокого обучения и статистических моделей. Описана структура и функциональность мобильного приложения, предназначенного для сбора данных и автоматизации подсчета зерна. Подчеркнута важность мобильных технологий для оптимизации ресурсов и улучшения производственных процессов в сельском хозяйстве.

Ключевые слова: урожайность, зерновые культуры, мобильные технологии, методы машинного обучения, глубокое обучение, статистические модели, автоматизация, сбор данных, оценка, сельское хозяйство

Для цитирования. Боровой Д.А., Ступина М.В., Садовая И.В. Применение искусственного интеллекта и мобильных технологий для эффективного мониторинга урожайности зерновых культур. *Молодой исследователь Дона.* 2024;9(3):18–22.

The Use of Artificial Intelligence and Mobile Technologies to Effectively Monitor Grain Crop Yields

Daniil A. Borovoi, Mariya V. Stupina, Irina V. Sadovaya

Don State Technical University, Rostov-on-Don, Russian Federation

Abstract

The paper explores the problem of estimating grain crop yields using mobile technologies. It analyzes the increasing demand for grain and the growing interest in methods for assessing crop yields. A review of machine learning techniques for yield estimation is conducted, with examples of deep learning and statistical modeling provided. The paper describes the structure and functionality of a mobile app designed to collect data and automate grain counting. It emphasizes the importance of mobile technology in optimizing resources and enhancing agricultural production processes.

Keywords: yield, grain crops, mobile technologies, machine learning methods, deep learning, statistical models, automation, data collection, evaluation, agriculture

For citation. Borovoi DA, Stupina MV, Sadovaya IV. The Use of Artificial Intelligence and Mobile Technologies to Effectively Monitor Grain Crop Yields. *Young Researcher of Don.* 2024;9(3):18–22.

Введение. В последние годы потребление зерна в мире значительно выросло.

По данным продовольственной и сельскохозяйственной организации ООН (ФАО), только в 2014 году было собрано 2,9 млрд тонн кукурузы, риса, пшеницы, сои и ячменя [1]. В связи растущим спросом на быстрые и точные методы мониторинга производства зерна возникает необходимость автоматизации процессов оценки урожайности зерновых культур. Традиционные методы оценки урожайности подвержены влиянию человеческого фактора, что может привести к неточным и субъективным результатам. Кроме того, эти методы требуют значительных временных и ресурсных затрат.

В отличие от традиционных, методы, использующие компьютерное зрение, обладают значительными преимуществами, по сравнению с традиционными методами визуальной оценки. Однако существуют определенные проблемы, которые нужно учитывать, чтобы точно оценить урожайность зерновых культур [2].

Одной из проблем использования компьютерного зрения является требование вычислительных мощностей, что в настоящее время все больше уходит на второй план благодаря прогрессу в области вычислительной техники. Например, в статье [1] замечено, что в последние годы использование компьютерного зрения выросло в связи с растущим спросом на быстрые и точные методы мониторинга производства зерна.

Другая проблема состоит в необходимости больших объемов данных для обучения моделей искусственного интеллекта, но это вполне распространённая проблема в сфере машинного обучения.

Целью настоящего исследования является анализ возможностей применения методов компьютерного зрения для оценки урожайности зерновых культур и их внедрения в мобильное приложение.

Для достижения поставленной цели были определены следующие задачи:

- 1. Анализ существующих методов оценки урожайности.
- 2. Разработка архитектуры системы с учетом ограниченной сетевой доступности для автоматизации процесса анализа.
- 3. Оценка текущих возможностей методов машинного обучения для решения задачи учета урожайности зерновых культур.

Основная часть. Краткий обзор методов оценки урожайности. Наземные методы. Один из применяемых сегодня подходов в оценке урожайности заключается в использовании наземных методов, которые основываются на прямом измерении параметров состояния посевов [2].

Можно выделить несколько наземных методов:

- визуальная оценка, которая проводится специалистами-агрономами;
- исследование образцов посевов, которое позволяет определить такие показатели, как масса зерна с единицы площади, число продуктивных растений, высота растений и т. д. Это также вполне возможно автоматизировать с помощью искусственного интеллекта [2].

Визуальная оценка остается распространённым методом в определении урожайности зерновых культур, хотя и имеет свои минусы. Как отмечено в исследовании [1], для точности результатов визуального подсчета требуется определенный опыт и знания о свойствах собираемых семян. Важно учесть, что визуальная оценка может быть трудоемким и затратным процессом, особенно при больших объемах собираемых семян. Также существует риск ошибок при подсчете, особенно если семена мелкие или их количество значительное.

Дистанционные методы. Дистанционные методы основаны на анализе данных, полученных с помощью спутников или аэрофотосъемки. Они включают в себя:

- спутниковый мониторинг, который позволяет получать данные о состоянии посевов с высоты в нескольких сотен километров;
 - аэрофотосъемка, с помощью которой можно получать более детальные изображения посевов.

Очевидно, что дистанционные методы являются более дорогостоящими и менее экологичными. Таким образом, можно сделать вывод, что дистанционные методы предоставляют эффективные способы анализа урожайности, но требуют значительных материальных и денежных затрат. Использование компьютерного зрения, с другой стороны, обеспечивает эффективный и точный анализ без необходимости значительных ресурсов, что делает его более привлекательным для агрономов.

В настоящее время разрабатываются новые методы оценки урожайности зерновых культур, основанные на использовании искусственного интеллекта. Эти методы позволяют учитывать широкий спектр факторов, влияющих на урожайность, и повышать точность прогнозов [3].

Для оптимального применения методов оценки урожайности с использованием компьютерного зрения в условиях ограниченной сетевой доступности авторы предлагают разработать следующую систему. Для ее визуального представления использован программный инструмент Excalidraw. На рис. 1 представлена схема, иллюстрирующая компоненты архитектуры данной системы.

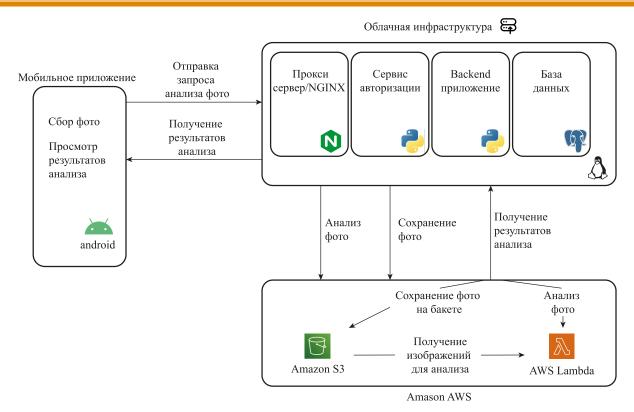


Рис. 1. Схема архитектуры системы

Описанная система состоит из трех основных компонентов:

- мобильное приложение. Это основной интерфейс для пользователей, которые собирают фотографии с полей. После сбора фотографий пользователь через приложение отправляет их на сервер для последующей обработки;
- облачная инфраструктура. Здесь хранятся данные, полученные от мобильного приложения, а также результаты анализа. Облачная инфраструктура играет ключевую роль в обеспечении доступности и безопасности данных;
- вычислительная инфраструктура. Используется для проведения вычислений с использованием искусственного интеллекта. В данном случае это серверы, на которых запускаются вычислительные процессы для анализа фотографий, отправленных с мобильного приложения. Например, в представленной схеме использована услуга Amazon AWS Lambda.

Рассмотрим подробнее часть мобильного приложения. Процесс анализа фотографий начинается с того, что пользователь собирает фотографии с помощью мобильного приложения. Эти фотографии затем отправляются на сервер для обработки. После этого backend приложение посылает запрос в вычислительный центр, где с помощью средств компьютерного зрения проводится анализ фотографий. После завершения анализа результаты возвращаются обратно на мобильное приложение, где они сохраняются как в облаке, так и в самом приложении. Пользователь может получить доступ к этим данным через мобильное приложение для последующего использования или анализа.

Для обеспечения бесперебойной работы приложения даже при отсутствии сетевого подключения будет реализована функция работы в офлайн-режиме. Это означает, что пользователи смогут продолжать собирать фотографии даже в местах с плохим или отсутствующим интернет-соединением.

Чтобы обеспечить максимальную эффективность анализа фотографий, приложение будет иметь возможность параллельной обработки всех собранных изображений. Это позволит ускорить получение результатов и сократить время ожидания для пользователей. Параллельная обработка также поможет распределить вычислительную нагрузку более равномерно, что важно для обеспечения стабильной работы системы.

Безопасность приложения будет обеспечена шифрованием данных, аутентификацией и авторизацией пользователей, а также механизмами защиты от вредоносных атак (DDoS).

Возможности методов машинного обучения для учета урожайности. Из-за трудоёмкости визуальной оценки многие исследователи приходят к выводу, что использование машинного обучения является более эффективным и точным методом для учета урожайности культур. Например, в исследовании [4] приводятся аргументы в пользу использования алгоритмов глубокого обучения для анализа заболеваний зерновых культур.

В работе [5] предложен сравнительный анализ прогнозирования урожайности кукурузы с использованием различных статистических моделей машинного и глубокого обучения. Авторы данной статьи пытались оценить урожайность кукурузы с помощью различных метеорологических параметров и количества внесенных удобрений. Для этого они использовали статистические методы (auto-ARIMA), методы машинного обучения (Random Forest) и глубокого обучения (CNN, LSTM). В результате удалось выяснить, что использованные модели с высокой точностью предсказали урожайность кукурузы. Наиболее точно оценила урожайность модель LSTM. За ней следуют CNN, auto-ARIMA и Random Forest, то есть можно сделать вывод, что урожайность кукурузы можно предсказать с помощью любой из этих моделей. И данный факт может свидетельствовать о востребованности методов машинного обучения для подсчёта зерен и урожайности.

Мобильное приложение для оценки урожайности растений способно автоматизировать процесс сбора данных, сделать его более эффективным, точным и удобным для пользователей, в данном случае для агрономов и фермеров.

Далее будет рассмотрено применение мобильного приложения при оценке урожайности. В отличие от webрешений, мобильное приложение обладает рядом преимуществ:

- обеспечивает полноценную работу в офлайн-режиме, что особенно ценно в условиях ограниченного или отсутствующего интернет-соединения;
- на устройствах, оснащенных нейронным процессором (NPU), возможно выполнение вычислений непосредственно на устройстве, без необходимости отправки фотографий для облачных вычислений;
- предоставляет полный доступ к использованию ресурсов и к хранилищу устройства для обработки фотографий, что способствует повышению производительности и удобству использования;
- мобильное приложение обладает более эффективной оптимизацией под конкретное устройство и лучшей интеграцией с операционной системой.

Мобильное приложения призвано заменить визуальную оценку и снизить ошибки из-за влияния человеческого фактора для дальнейшего анализа урожайности путем использования моделей машинного обучения и статистического анализа, которые проводят агрономы.

Заключение. Одной из ключевых проблем, с которыми приходится постоянно сталкиваться агрономам и производителям сельскохозяйственной продукции, является эффективное управлении ресурсами, то есть в данном случае зерном, семенами. Авторы исследования предлагают решать эту проблему при помощи мобильных технологий и компьютерного зрения. Разработанное ими решение, основанное на использовании компьютерного зрения и мобильного приложения, способствует повышению точности оценки урожайности зерновых культур, помогает выявлять существующие тренды и закономерности в производстве сельхозпродукции, сокращает временные затраты на анализ урожайности, уменьшает риски человеческих ошибок при этом, что в целом обеспечивает эффективность производства зерна.

Список литературы

- 1. Patrício D.I., Rieder R. Computer Vision and Artificial Intelligence in Precision Agriculture for Grain Crops: A Systematic Review. *Computers and Electronics in Agriculture*. 2018;153:69–81. https://doi.org/10.1016/j.compag.2018.08.001
- 2. Страшная А.И., Береза О.В., Кланг П.С. *Прогнозирование урожайности зерновых культур на основе комплексирования наземных и спутниковых данных в субъектах Южного федерального округа.* URL: https://method.meteorf.ru/publ/tr/tr380/08.pdf (дата обращения: 18.12.2023).
- 3. Клещенко А.Д., Савицкая О.В. Технология ежедекадной оценки урожайности зерновых культур по спутниковой и наземной агрометеорологической информации. *Современные проблемы дистанционного зондирования Земли из космоса*. 2011;8(1):178–182.
- 4. Ferentinos K.P. Deep Learning Models for Plant Disease Detection and Diagnosis. *Computers and Electronics in Agriculture*. 2018;145:311–318, https://doi.org/10.1016/j.compag.2018.01.009
- 5. Özden C. Estimating Corn Yield Using Statistical, Machine Learning and Deep Learning Methods. *Journal of Agricultural Faculty of Gaziosmanpasa University*. 2023;40(2):74–80. https://doi.org/10.55507/gopzfd.1320542

Об авторах:

Даниил Александрович Боровой, студент кафедры информационных технологий Донского государственного технического университета (344003, РΦ, г. Ростов-на-Дону, пл. Гагарина, 1), daniilborovoy42@gmail.com

Мария Валерьевна Ступина, доцент кафедры информационных технологий Донского государственного технического университета (344003, РФ, г. Ростов-на-Дону, пл. Гагарина, 1), maria stupina@mail.ru

Ирина Викторовна Садовая, старший преподаватель кафедры информационных технологий Донского государственного технического университета (344003, РФ, г. Ростов-на-Дону, пл. Гагарина, 1), <u>i sagulenko@mail.ru</u>

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

About the Authors:

Daniil A. Borovoi, Student of the Information Technologies Department, Don State Technical University (1, Gagarin Sq., Rostov-on-Don, 344003, RF) <u>daniilborovoy42@gmail.com</u>

Mariya V. Stupina, Associate Professor of the Information Technologies Department, Don State Technical University (1, Gagarin Sq., Rostov-on-Don, 344003, RF), maria_stupina@mail.ru

Irina V. Sadovaya, Senior Lecturer of the Information Technologies Department, Don State Technical University (1, Gagarin Sq., Rostov-on-Don, 344003, RF), <u>i_sagulenko@mail.ru</u>

Conflict of interest statement: the authors do not have any conflict of interest.

All authors have read and approved the final manuscript.