

УДК 625.70

УСТАЛОСТНЫЕ РАЗРУШЕНИЯ АСФАЛЬТОБЕТОННЫХ ПОКРЫТИЙ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ

Е. В. Углова, О. А. Шило, В. А Сударкина

Донской государственный технический университет, г. Ростов-на-Дону, Российская Федерация

<u>Uglova.ev@yandex.ru.</u>

<u>Olga_shilo@bk.ru</u>

<u>valeriya.sudarkina94@mail.ru</u>

Рассматривается воздействие основных факторов дорожную на конструкцию, представлена методика расчета накопления усталостного разрушения дорожного покрытия. Проанализированы значения горизонтальных продольных деформаций на нижней грани асфальтобетонных слоев в условиях реального нагружения.

Ключевые слова: дорожная конструкция, усталостное разрушение асфальтобетонных покрытий, модуль упругости.

UDK 625.70

FATIGUE FAILURE OF ASPHALT CONCRETE PAVEMENTS IN THE PROCESS OF OPERATION

E. V. Uglova, O. A. Shilo, V. A. Sudarkina

Don State Technical University, Rostov-on-Don, Russian Federation

<u>Uglova.ev@yandex.ru.</u> <u>Olga_shilo@bk.ru</u> valeriya.sudarkina94@mail.ru

The article considers the impact of major factors on the road construction, proposes the design procedure of the accumulation of fatigue failure of the pavement. It analyzes the values of horizontal longitudinal strains on the bottom asphalt layers in real conditions of loading.

Keywords: road construction, fatigue failure of asphalt concrete pavements, elastic modulus.

Введение. В настоящие время нежесткие дорожные одежды с асфальтобетонным покрытием являются самыми распространенными в дорожной отрасли. Одной из проблем в Российской Федерации, является низкая долговечность дорожных одежд. Решение данной проблемы обеспечивает экономический эффект за счет сокращения затрат на проведение ремонтных работ и улучшения транспортно-эксплуатационного состояния в течение всего срока службы. На сегодняшний день в Российской Федерации соответствуют нормам 37 % федеральных и 24 % региональных дорог.

Неудовлетворительное состояние дорожной одежды вызвано следующими факторами:

- непрерывный рост интенсивности движения;
- повышение грузоподъемности транспортных средств и осевых нагрузок;
- увеличения скоростных режимов.

В действующем нормативном документе ОДН 218.046-01 [1] расчет дорожной одежды по допустимому напряжению при изгибе в монолитных слоях преобразован в расчет монолитных слоев на усталостное сопротивление с учетом количества приложений транспортной нагрузки за срок службы. Однако, данная методика несовершенна.

В целях более детальной оценки изменения модуля упругости и воздействия растягивающих напряжений на дорожную конструкцию, рассмотрена немецкая технология расчета «RDO Asphait 09».

Усталостное разрушение асфальтобетонных покрытий. В процессе эксплуатации автомобильные дороги подвергаются воздействию механических усилий, вызываемых нагрузками

транспортных средств. Особенностью динамической нагрузки является возникновение упругого прогиба (рис. 1), вызывающего сжимающие напряжения в дорожном покрытии и растягивающие напряжения в нижних слоях наката асфальтобетонных слоев.

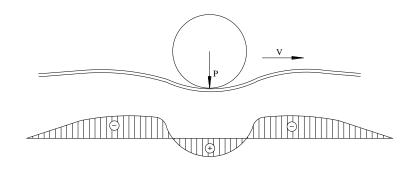


Рис. 1. Форма чаши прогиба

Немецкий метод расчета накопления усталостного разрушения. В соответствии с «Указаниями по расчету дорожной одежды с асфальтобетонным покрытием RDO Asphait 09» [2], следует ограничить нагружение асфальтобетона так, чтобы оно исключало образование трещин в асфальтобетонных слоях в течение планового срока эксплуатации.

Рис. 2. Факторы, влияющие на усталостное разрушение асфальтобетонных слоев.

В таблице 1 представлено изменение значений модуля упругости асфальтобетона по глубине для каждого месяца года. Асфальтобетонные слои условно поделены на расчетные, с шагом в 1 см для верхнего слоя покрытия и 2 см для остальных асфальтобетонных слоев. Вся конструкция составляет 28 см.

Таблица 1 Изменение значений модуля упругости асфальтобетона по глубине для каждого месяца года

	Значения модулей упругости для каждого месяца года											
	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сен.	Окт.	Нояб.	Дек.
ЩМА-15 1	8757	8757	6926	4546	3038	2222	1877	2092	2843	4079	5577	7399
СМ												
ЩМА-15 2	8685	8685	6894	4554	3062	2250	1906	2121	2869	4093	5570	7358
СМ												
ЩМА-15 3	8625	8625	6867	4561	3083	2275	1931	2146	2891	4105	5564	7323
СМ												
ЩМА-15 4	8574	8574	6844	4567	3101	2296	1953	2167	2910	4116	5559	7293
СМ												

	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сен.	Окт.	Нояб.	Дек.
ПДА а/б 6 см	6854	6854	5594	3885	2741	2091	1807	1985	2588	3538	4638	5924
ПДА а/б 8 см	6807	6807	5573	3892	2760	2114	1831	2008	2608	3548	4633	5896
ПДА а/б 10	6769	6769	5555	3896	2775	2132	1850	2027	2624	3557	4629	5874
CM	0707	0707	3333	3070	2113	2132	1030	2027	2021	3331	102)	3071
ПДА а/б 12	6738	6738	5541	3900	2787	2147	1866	2042	2637	3564	4626	5855
СМ		0,00			_, _,							
ПДА а/б 14	3957	3957	3259	2301	1649	1273	1108	1212	1561	2104	2725	3443
СМ												
ПДА а/б 16	3944	3944	3253	2303	1654	1280	1114	1218	1567	2107	2724	3435
СМ												
ПДА а/б 18	3933	3933	3248	2304	1659	1285	1120	1224	1572	2109	2722	3428
СМ												
ПДА а/б 20	3924	3924	3244	2305	1663	1290	1125	1229	1576	2112	2721	3423
СМ												
ПДА а/б 22	3916	3916	3240	2307	1666	1294	1130	1233	1579	2113	2721	3418
СМ												
ПДА а/б 24	3908	3908	3237	2307	1669	1298	1134	1237	1583	2115	2720	3414
СМ												
ПДА а/б 26	3902	3902	3234	2308	1672	1301	1137	1240	1585	2117	2719	3410
СМ												
ПДА а/б 28	3896	3896	3231	2309	1674	1304	1140	1243	1588	2118	2718	3406
СМ												

Допустимое число приложений нагрузки для соответствующих режимов нагружения определяются из уравнения (1) для максимальных удлинений при растяжении на изгибе, возникающих в слое.

$$zulN = \frac{SF}{F} \times a \times \varepsilon^{\kappa}, \tag{1}$$

rge zulN — допустимое число приложений нагрузок на ось до возникновения трещин несущих слоях из асфальтобетона;

SF — коэффициент сдвига, для косвенного порогового испытания на сдвиг, следует принимать SF=1500;

- F коэффициент запаса прочности;
- а параметры материала, определенные через регрессию от испытания на усталость;
- єk относительная начальная упругая деформация во время испытания.

Рис. 3. Допустимое число приложений нагрузки на ось 2 т за год

Молодой исследователь Дона

Частичные повреждения, вследствие допустимых цикличных нагрузок при различных напряжениях, могут аккумулироваться в общее повреждение на основании гипотезы Майнера (2)

$$\sum = \frac{vorhN_1}{zulN_1} + \frac{vorhN_2}{zulN_2} + \frac{vorhN_3}{zulN_2} + \dots + \frac{vorhN_n}{zulN_n} \le 1,$$
(2)

где vorh Ni — ожидаемое число приложений нагрузок на ось в течение запланированного периода эксплуатации, i=1,2, ...n;

zul Ni — допустимое число приложений нагрузок на ось в течение запланированного периода эксплуатации, $i=1,2,\ldots n;$

n — число нагруженных состояний, которое следует учитывать.

$$\Sigma = 0.428/(7.756E+22) + 232.832/(4.237E+21) + 461.52/(7.788E+20) + ... = 0.0000406 < 1$$

Расчет считается выполненным, если результат отношения ожидаемого количества к допустимому количеству приложений нагрузки для запланированного срока эксплуатации меньше или равно 1 (2).

Заключение. Применяемая методика расчета в Российской Федерации, согласно ОДН 218.046-2001, не обеспечивает детального рассмотрения всех действующих факторов на дорожную конструкцию, в следствии чего уже через 1-2 года эксплуатации автомобильной дороги, неизбежно образование усталостных трещин в пакете асфальтобетонных слоев. Вышеописанный метод позволяет рассчитывать растягивающие напряжения в дорожном покрытии для различных периодов года и суммировать их влияние на развитие усталостных процессов, что в свою очередь позволяет уже на этапе проектирования дорожной конструкции выявить механизм образования дефектов в покрытии и назначить соответствующий вид мероприятий для их предотвращения.

Библиографический список.

- 1. Бабков, В. Ф. Проектирование автомобильных дорог: учебник для вузов / В. Ф. Бабков, О. В. Андреев. Москва: Транспорт, 1987. Ч.1. 368 с.
- 2. Бабков, В. Ф. Современные автомобильные магистрали: учебник для вузов / В. Ф. Бабков. Москва : Транспорт, 1974. 279 с.
- 3. Бируля, А. К. Эксплуатация автомобильных дорог: учебник для вузов / А. К. Бируля. Москва: Транспорт, 1966. 326 с.
- 4. Васильев, А. П. Ремонт и содержание автомобильных дорог: Справочная энциклопедия дорожника (СЭД). / под редакцией А. П. Васильева. Москва : Информавтодор, 2004. 507 с.
- 5. Гайворонский, В. Н. Температурный режим асфальтобетонных покрытий / В. Н. Гайворонский // Автомобильные дороги. 1970. №12. С. 15–18.
- 6. Гезенцвей, Л. Б. Дорожный асфальтобетон / Л. Б. Гезенцвей, Н. В. Горелышев, А. М. Богуславский, И. В. Королев. Москва : Транспорт, 1985. 350 с.
- 7. Дровалева О.В. Усталостная долговечность асфальтобетона при воздействии интенсивных транспортных нагрузок: автореферат диссерт. на соиск. учен. степ. канд. техн. наук. Ростов—на—Дону: 2009. 23 с.
- 8. Ермакович, Д. 3. Экспериментальные исследования напряжений и деформаций в дорожных одеждах при воздействии движущегося колеса / Д. 3. Ермакович// сборник трудов ХАДИ. Харьков, 1961. вып. 25. С. 71–76.
- 9. Золотарев, В. А. Долговечность дорожного асфальтобетона / В.А. Золотарев. Харьков : «Вища школа», 1977. 116 с.

Молодой исследователь Дона

- 10. Дорожный асфальтобетон / под ред. Л.Б. Гезенцвея. Москва : Транспорт, 1985. 196 с.
- 11. Радовский, Б. С., Мерзликин А.Е. Руководство по механико-эмпирическому проектированию новых и реконструируемых дорожных одежд (США) / Б. С. Радовский, А. Е. Мерзликин // Наука и техника в дорожной отрасли. №1— 2005. С. 32–33.