

УДК 621.315.375

ДИДАКТИЧЕСКИЕ ПРИНЦИПЫ ИСПОЛЬЗОВАНИЯ УПРУГОГО МОДЕЛИРОВАНИЯ ТЕЛА В ПЕДАГОГИКЕ

И. Г. Попова, В. С. Маширова

Донской государственный технический университет (г. Ростов-на-Дону, Российская Федерация)

Рассматриваются дидактические принципы компьютерного моделирования движения тела путем замены его системой частиц, связанных невесомыми упругими стержнями. Данное моделирование позволяет: изучать различные виды движения и деформацию тел для актуализации знания законов механики; активизировать учебно-познавательную активность обучающихся; повышать мотивацию к обучению; осваивать метод компьютерного моделирования для объяснения используемых алгоритмов и результатов симуляции; развивать физическое и алгоритмическое мышление; применять метод координат для выполнения математической обработки информации; визуализировать информацию о состоянии объекта для построения графика движения; создавать анимации движения и деформаций тела; углублять междисциплинарные связи.

Ключевые слова: упругие стержни, компьютерное моделирование, динамическая вязкость, прецессия, нутация, гироскоп, дидактические возможности, симуляция.

DIDACTIC PRINCIPLES OF USING ELASTIC BODY MODELING IN PEDAGOGY

I. G. Popova, V. S. Mashirova

Don State Technical University (Rostov-on-Don, Russian Federation)

The paper considers the didactic principles of computer modeling of body motion by replacing it with a system of particles connected by weightless elastic rods. This simulation allows you to: study various types of motion and deformation of bodies to update knowledge of the laws of mechanics; activate the educational and cognitive activity of students; increase motivation to learn; master the method of computer modeling to explain the algorithms used and the results of simulation; develop physical and algorithmic thinking; apply the coordinate method to perform mathematical processing of information; visualize information about the state of an object to plot movement; create animations of movement and body deformations; deepen interdisciplinary links.

Keywords: elastic rods, computer modeling, dynamic viscosity, precession, nutation, gyroscope, didactic possibilities, simulation.

Введение. Выпускник технического обладать вуза должен познавательной, информационной, исследовательской, математической, творческой и другими компетенциями. Развитие физики, информатики и профессиональные компетенции преподавателей математики и физики на занятиях компьютерного моделирования в техническом вузе требуют формирования умений создавать простые компьютерные программы, моделирующие различные физические, социально-экономические и другие системы. Для этого необходимо обеспечение осознанного и самостоятельного обучения путем решения задач профессиональной ориентации. Это позволит перейти от простого воспроизведения изучаемого материала к решению творческих задач. В связи с этим актуальным является решение проблемы создания и подборки несложных задач по компьютерному моделированию различных систем, которые могут также использоваться при написании курсовых и выпускных квалификационных работ.

Эффективность образовательной деятельности обеспечивается: подбором наукоемких компьютерных моделей и соответствующих задач; изменчивостью действий при работе с

компьютерными моделями и проведении вычислительного эксперимента; стимулированием умственной деятельности вопросами и оценками результатов.

Цель работы — выявить дидактические возможности моделирования движения тела с помощью замены его системой материальных точек, соединенных упругими стержнями, в классе для компьютерного моделирования в вузе. Гипотеза исследования заключается в следующем: тело моделируется системой частиц, связанных невесомыми упругими стержнями [1], подчиняющихся основному закону динамики, что позволяет получать компьютерную анимацию, то есть визуальное изображение движущегося тела в последующие моменты времени. Необходимо построить графики зависимостей координат, скоростей и ускорения от времени; смоделировать поступательное, вращательное, плоское и сферическое движение тел, а также их взаимодействие с поверхностью или другими телами для изучения прецессии гироскопа и других явлений; повысить мотивацию обучающихся.

В работе показано, что такие модели позволяют: изучать поступательное, вращательное движение, деформации тел для актуализации знания законов механики; активизировать учебнопознавательную активность обучающихся, повысить их мотивацию к обучению; осваивать метод компьютерного моделирования для объяснения используемых алгоритмов и результатов симуляции; развивать физическое и алгоритмическое мышление, способность применения метода математической обработки координат ДЛЯ выполнения информации; визуализировать информацию о состоянии объекта для построения графика движения; создавать анимации движения и деформации тела; создавать проблемные ситуации, требующие редактирования компьютерной программы; углублять междисциплинарные связи между физикой, математикой и информатикой. Такое моделирование требует применения методов численного решения дифференциальных уравнений и вычисления интегралов, рассмотренных в работах [2, 3]. Идеи, касающиеся создания и использования компьютерных моделей в обучении, отражены в разнообразных учебных пособиях [4–6].

Обучение является эффективным только тогда, когда у обучающихся высокая мотивация и личный интерес к результатам. Для создания мотивации в образовательной деятельности необходимо формировать познавательный интерес к изучаемым вопросам. Для этого необходимо решать профессионально-ориентированные задачи, тесно связанные с курсами физики, математики и информатики. В классах компьютерного моделирования можно создавать различные модели физических, биологических, социально-экономических и других систем. Ограничимся рассмотрением двумерных и трехмерных моделей движения твердого и упругого тела, в которых используется метод связанных частиц.

Суть обсуждаемого метода заключается в следующем. Моделируемое тело заменяется системой материальных точек, соединенных между собой упругими стержнями, каждый из которых состоит из упругих и диссипативных элементов, соединенных параллельно. В начальный момент времени, когда тело не деформируется, программа вычисляет расстояния i, j, s между парами частиц, разнесенных на расстояние, не превышающее радиус действия сил R_{max} . Деформация тела j-й частицы сдвига относительно i-го приводит к появлению «упругой» силы и силы вязкого трения. Изменяя значение R_{max} , коэффициенты упругости k и вязкости r, можно моделировать вязкоупругое тело с различными свойствами. Если тело находится в гравитационном поле, то учитываются силы тяжести, действующие на каждую материальную точку. Цикл последовательно считает все частицы. Проекции ускорения рассчитываются для каждой частицы с использованием основного закона динамики. Для расчета скоростей и координат применяется метод Эйлера [7]. Затем отображается результат, переменная τ увеличивается на $\Delta \tau$, и все повторяется снова.

Обсуждаемый метод позволяет моделировать движение и деформацию вытянутого тела. Сила «упругого» взаимодействия $F_{i,j}$ между любыми двумя частицами тела равна: F_{max} , если $R_{min} < l_{i,j}$; F_{min} , если R_{max} $j_1 \le li$, $j \le 1$; ноль, если li, j > R. Здесь j_1 — расстояние между i-й и j-й частицами в данный момент времени. Сила вязкого трения пропорциональна скорости относительного движения частиц. Если жесткость звеньев мала, то тело упругое и легко меняет свои размеры и форму. С большим k тело твердое, плохо деформируется. Если радиус действия силы k мал, тело с малыми деформациями разрушается. Если частицы смещены относительно друг друга на большие расстояния, разрушая старые и формируя новые связи с другими частицами, тело становится вязким, оно испытывает пластическую деформацию.

Использование математических абстракций, алгоритмов ветвления и циклической структуры, элементов компьютерной графики способствует развитию теоретического, алгоритмического и наглядно-образного мышления. Автоматизация расчетов и возможность создания циклов позволяет выполнять кропотливые математические вычисления быстро для того, чтобы построить и изучить графики зависимостей, которые экспериментально получить сложно. Например, график зависимости динамической вязкости воды от температуры в жидком состоянии и в виде пара представлен на рис. 1.

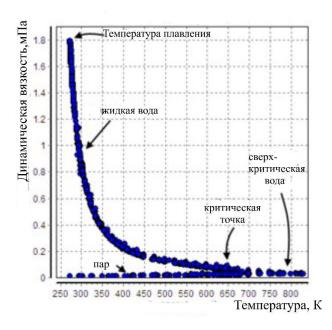


Рис. 1. Зависимость динамической вязкости воды от температуры в жидком состоянии и в виде пара

Сочетание логической и математической обработки информации с видимостью модели приводит к активации памяти, внимания, наблюдения и развитию интеллектуального потенциала обучающегося. В качестве примера применения модели связанных частиц рассмотрим несколько задач, требующих расчета движения и деформации тела.

Смоделируем столкновение вязкоупругого тела с твердой поверхностью. Когда неэластичное тело прямоугольной формы участвует в плоском движении, так, что все его частицы движутся параллельно вертикальной плоскости, то центр масс движется по параболе, а само тело вращается. Необходимо смоделировать движение тела, чтобы получить траектории его частиц при столкновении тела с вертикальной или горизонтальной поверхностью. Результаты моделирования приведены на рис. 2. Программа позволяет создать компьютерную анимацию столкновения движущегося тела с поверхностью для расчета траектории движения любой частицы, отображать на экране проекцию скорости и ускорения в любое время.

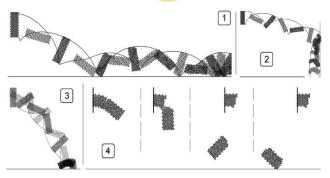


Рис. 2. Столкновение тела с поверхностью

Для моделирования прецессии гироскопа в однородном поле тяжести, вращающегося вокруг закрепленной точки, при различных начальных данных и значениях коэффициента вязкого трения, заменим его системой из 14 частиц, 12 из которых расположены вдоль окружности радиуса R. Тринадцатая находится в центре окружности, четырнадцатая — на оси вращения (рис. 3).

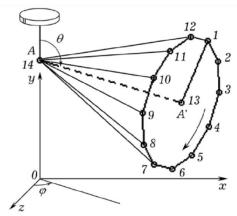


Рис. 3. Модель гироскопа

Пусть частицы связаны между собой невесомыми упругими стержнями, образующими симметричную пирамиду с правильным додекагоном в основании.

Длины стержней и массы частиц подбираем так, чтобы они соответствовали реальному гироскопу. Четырнадцатая частица неподвижна, а остальные движутся по сферической поверхности. На каждую из них действует сила тяжести mg_i . Угол нутации θ — угол между осью собственного вращения гироскопа AA' и вертикальной осью Oy, а угол прецессии φ — угол между осью Oz и проекцией оси гироскопа AA' на плоскость xOy.

В результате на экран после компьютерного моделирования выводится внешний вид гироскопа, совершающего прецессию (рис. 4).

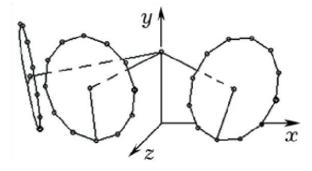


Рис. 4. Прецессия гироскопа

На рис. 5 представлен результат компьютерного моделирования траектории движения центра диска A'. В результате изменения углов прецессии и нутации траекторией движения точки A' в пространстве появляется циклоида. При отсутствии вязкости угол нутации колеблется в интервале от θ_{min} до θ_{max} . Угол нутации увеличивается до π и нутационные колебания $\theta(t)$ затухают при движении в вязкой среде [8].

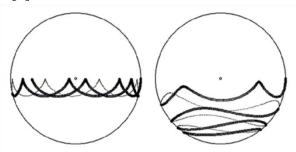


Рис. 5. Траектория движения центра колеса А' в проекции на плоскость ХОУ

На рис. 6 приведены графики зависимости $\theta(t)$ изменения угла нутации от времени при различных коэффициентах сопротивления среды и скоростях ω вращения гироскопа. Начальное значение $\theta_0 = \pi/2$.

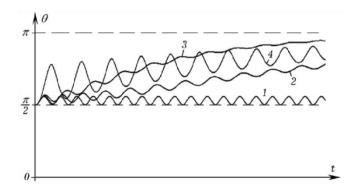


Рис. 6. Графики зависимостей угла нутации от времени $\theta(t)$ при $\theta_0 = \pi/2$

Кривая 1 изображает незатухающие колебания в отсутствии сопротивления угла нутации, который периодически может принимать значения $\theta_0 = \pi/2$. Кривые 2 и 3 при r = 0.05 и 0,1 представляют колебания угла нутации θ , которые раньше затухают при росте коэффициента сопротивления r, а значения угла θ быстрее увеличиваются до π . Кривая 4 изображает колебания $\theta(t)$, происходящие с большей амплитудой при малой скорости собственного вращения [4, 9].

Заключение. Представленные результаты компьютерного моделирования на языке *Pascal* могут быть использованы на учебных занятиях, при выполнении различных научных проектов и выпускных квалификационных работ. Использование компьютерных моделей помогает формировать навыки программирования, устанавливать межпредметные связи, повышать у обучающихся интерес к физике, математике и информатике.

Библиографический список

- 1. Лапшин, В. В. Нелинейная упругопластическая модель коллиниарного удара / В. В. Лапшин, Е. А. Юрин // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. №1. С. 90–99.
- 2. Ильина, В. А. Численные методы для физиков-теоретиков / В. А. Ильина, П. К. Силаев. Москва-Ижевск : Институт компьютерных исследований, 2004. 118 с.

- 3. Ращиков, В. И. Численные методы решения физических задач: учеб. пособие. / В. И. Ращиков, А. С. Рошаль. Санкт-Петербург: Лань, 2005. 208 с.
- 4. Майер, Р. В. Компьютерное моделирование : учеб.-метод. пособ. для студ. педагогич. вузов [Электр. учеб. изд. на компакт диске] / Р. В. Майер. Глазов : Глазов. гос. пед. ин-т, 2015. 620 с (24,3 Мб).
- 5. Попов, С. Е. Методическая система подготовки учителя в области вычислительной физики / С. Е. Попов. Нижний Тагил : НТГСПА, 2005. 227с.
- 6. Угринович, Н. Д. Исследование информационных моделей. Элективный курс : учеб. пособие / Н. Д. Угринович. Москва : Бином. Лаборатория знаний, 2004. 183 с.
- 7. Булавин, Л. А. Компьютерное моделирование физических Sistem / Л. А. Булавин, Н. В. Выгорницкий, Н. И. Лебовка. Долгопрудный : Интеллект, 2011. 352 с.
- 8. Ландау, Л. Д. Механика / Л. Д. Ландау, Е. М. Лифшиц. Москва : Физматлит, 2012. 224 с.
- 9. Бутиков, Е. И. Прецессия и нутация гироскопа / Е. И. Бутиков // Компьютерные инструменты в образовании. 2007. № 1. С. 30–38.

Об авторах:

Попова Инна Григорьевна, доцент кафедры «Физика» Донского государственного технического университета (344003, РФ, г. Ростов-на-Дону, пл. Гагарина, 1), кандидат физикоматематических наук, <u>inna111109@rambler.ru</u>

Маширова Вероника Сергеевна, студент кафедры «Физика» Донского государственного технического университета (344003, РФ, г. Ростов-на-Дону, пл. Гагарина, 1), veronika_mashirova@mail.ru

Authors:

Popova, Inna G., Associate professor, Department of Physics, Don State Technical University (1, Gagarin sq., Rostov-on-Don, RF. 344003), Cand.Sci., inna111109@rambler.ru

Mashirova, Veronika S., Student, Department of Physics, Don State Technical University (1, Gagarin sq., Rostov-on-Don, RF. 344003), veronika_mashirova@mail.ru