

УДК 624.04

КОНЕЧНО-ЭЛЕМЕНТНОЕ МОДЕЛИРОВАНИЕ ПОЛЗУЧЕСТИ ТРЕХСЛОЙНОЙ ПЛАСТИНЫ

А. С. Чепурненко, В. С. Чепурненко, А. А. Савченко

Донской государственный технический университет, Ростов-на-Дону, Российская Федерация

anton_chepurnenk@mail.ru

Приводятся вывод разрешающих уравнений для расчета трехслойной пластины с учетом ползучести среднего слоя методом конечных элементов и пример расчета трехслойной плиты, шарнирно опертой по контуру загруженной равномерно И распределенной нагрузкой. Представлено сравнение результатов с решением, полученным на основе метода конечных разностей.

Ключевые слова: трехслойная пластина, полимеры, метод конечных элементов, ползучесть, численные методы.

UDC 624.04

FINITE-ELEMENT MODELING OF CREEP OF THREE-LAYER PLATE

A.S. Chepurnenko, V.S. Chepurnenko, A. A.Savchenko Don State Technical University, Rostov-on-Don, Russian Federation

anton_chepurnenk@mail.ru

The article provides the derivation of the equations for calculation of three-layer plates taking into account the creep of the middle layer by the finite element method and the example of calculation of three-layer plate, hinged along the outline and with a uniformly distributed load. The presented results are compared with the solution obtained according to the method of finite differences.

Keywords: three-layer plate, polymers, finite element method, creep, numerical methods.

Введение. Трехслойные конструкции находят широкое применение во многих отраслях, включая авиастроение, судостроение, строительство и др. Такие конструкции, как правило, состоят из двух наружных слоев с высокими механическими характеристиками (сталь, алюминий, стеклопластики) и расположенного между ними легкого заполнителя. В качестве заполнителя широко применяются пористые полимеры (пенопласты), для которых помимо упругих свойств, характерна явно выраженная реология. Расчет трехслойных конструкций с учетом ползучести рассматривается в работах [1–3]. В работах [1–2] приводятся разрешающие уравнения для треугольного конечного элемента трехслойной плиты и оболочки. В настоящей работе будут рассмотрены прямоугольные конечные элементы, характеризующиеся более высокой точностью.

Вывод разрешающих уравнений. Используемый прямоугольный конечный элемент трехслойной плиты приведен на рисунке 1.

Рис. 1. Прямоугольный конечный элемент трехслойной плиты

Каждый узел данного элемента имеет 5 степеней свободы: перемещения в плоскости верхней обшивки u_i^{s} и v_i^{s} , перемещения в плоскости нижней обшивки u_i^{n} и v_i^{n} , а также прогиб w_i . Для поля перемещений в пределах элемента принимаем следующую аппроксимацию:

$$u^{e(n)} = N_1 u_1^{e(n)} + N_2 u_2^{e(n)} + N_3 u_3^{e(n)} + N_4 u_4^{e(n)}$$

$$v^{e(n)} = N_1 v_1^{e(n)} + N_2 v_2^{e(n)} + N_3 v_3^{e(n)} + N_4 v_4^{e(n)}$$

$$w = N_1 w_1 + N_2 w_2 + N_3 w_3 + N_4 w_4,$$
(1)

где N_1, N_2, N_3, N_4 — функции формы.

$$N_{1} = \frac{1}{ab} \left(\frac{a}{2} - x \right) \left(\frac{b}{2} - y \right); \quad N_{2} = \frac{1}{ab} \left(\frac{a}{2} + x \right) \left(\frac{b}{2} - y \right);$$

$$N_{3} = \frac{1}{ab} \left(\frac{a}{2} + x \right) \left(\frac{b}{2} + y \right); \quad N_{4} = \frac{1}{ab} \left(\frac{a}{2} - x \right) \left(\frac{b}{2} + y \right),$$
(2)

где *a*, *b* — размеры конечного элемента.

Координаты *х* и *у* в формулах (2) отсчитываются от центра тяжести конечного элемента.

Вектор деформаций конечного элемента записывается в виде:

$$\{\varepsilon\} = \left\{\varepsilon_x^{\mu} \quad \varepsilon_y^{\mu} \quad \gamma_{xy}^{\mu} \quad \varepsilon_x^{e} \quad \varepsilon_y^{e} \quad \gamma_{xy}^{e} \quad \gamma_{zx}^{c} \quad \gamma_{yx}^{c}\right\}^{T},$$

где $\varepsilon_x^{''}$, $\varepsilon_y^{''}$, $\gamma_{xy}^{''}$ — деформации нижней обшивки, ε_x^{e} , ε_y^{e} , γ_{xy}^{e} — деформации верхней обшивки, γ_{zx}^{c} , γ_{yx}^{c} — деформации заполнителя.

В технической теории трехслойных пластин связь между перемещениями и деформациями имеет вид:

$$\varepsilon_{x}^{n(s)} = \frac{\partial u^{n(s)}}{\partial x}; \quad \varepsilon_{y}^{n(s)} = \frac{\partial v^{n(s)}}{\partial y}; \quad \gamma_{xy}^{n(s)} = \frac{\partial u^{n(s)}}{\partial y} + \frac{\partial v^{n(s)}}{\partial x};$$

$$\gamma_{zx}^{c} = \frac{u^{n} - u^{s}}{h} + \frac{\partial w}{\partial x}; \quad \gamma_{zy}^{c} = \frac{v^{n} - v^{s}}{h} + \frac{\partial w}{\partial y}.$$
(3)

Подставив (1) в (3), получим следующую связь между узловыми перемещениями и деформациями в матричном виде:

http://mid-journal.ru

Nº3(6) 2017

 $\{\varepsilon\} = [B]\{U\},\$

где $\{U\}$ — вектор узловых перемещений.

$$\{U\} = \begin{cases} \{\rho_1\} \\ \{\rho_2\} \\ \{\rho_3\} \\ \{\rho_4\} \end{cases}, \quad \{\rho_i\} = \{u_i^n \quad v_i^n \quad u_i^e \quad v_i^e \quad w_i\}^T,$$

[B] =

$\left[\frac{\partial N_1}{\partial x}\right]$	0	0	0	0	$\frac{\partial N_2}{\partial x}$	0	0	0	0	$\frac{\partial N_3}{\partial x}$	0	0	0	0	$\frac{\partial N_4}{\partial x}$	0	0	0	0
0	$\frac{\partial N_1}{\partial y}$	0	0	0	0	$\frac{\partial N_2}{\partial y}$	0	0	0	0	$\frac{\partial N_3}{\partial y}$	0	0	0	0	$\frac{\partial N_4}{\partial y}$	0	0	0
$\frac{\partial N_1}{\partial y}$	$\frac{\partial N_1}{\partial x}$	0	0	0	$\frac{\partial N_2}{\partial y}$	$\frac{\partial N_2}{\partial x}$	0	0	0	$\frac{\partial N_3}{\partial y}$	$\frac{\partial N_3}{\partial x}$	0	0	0	$\frac{\partial N_4}{\partial y}$	$\frac{\partial N_4}{\partial x}$	0	0	0
0	0	$\frac{\partial N_1}{\partial x}$	0	0	0	0	$\frac{\partial N_2}{\partial x}$	0	0	0	0	$\frac{\partial N_3}{\partial x}$	0	0	0	0	$\frac{\partial N_4}{\partial x}$	0	0
0	0	0	$\frac{\partial N_1}{\partial y}$	0	0	0	0	$\frac{\partial N_2}{\partial y}$	0	0	0	0	$\frac{\partial N_3}{\partial y}$	0	0	0	0	$\frac{\partial N_4}{\partial y}$	0
0	0	$\frac{\partial N_1}{\partial y}$	$\frac{\partial N_1}{\partial x}$	0	0	0	$\frac{\partial N_2}{\partial y}$	$\frac{\partial N_2}{\partial x}$	0	0	0	$\frac{\partial N_3}{\partial y}$	$\frac{\partial N_3}{\partial x}$	0	0	0	$\frac{\partial N_4}{\partial y}$	$\frac{\partial N_4}{\partial x}$	0
$\frac{N_1}{h}$	0	$\frac{-N_1}{h}$	0	$\frac{\partial N_1}{\partial x}$	$\frac{N_2}{h}$	0	$\frac{-N_2}{h}$	0	$\frac{\partial N_2}{\partial x}$	$\frac{N_3}{h}$	0	$\frac{-N_3}{h}$	0	$\frac{\partial N_3}{\partial x}$	$\frac{N_4}{h}$	0	$\frac{-N_4}{h}$	0	$\frac{\partial N_4}{\partial x}$
0	$\frac{N_1}{h}$	0	$\frac{-N_1}{h}$	$\frac{\partial N_1}{\partial y}$	0	$\frac{N_2}{h}$	0	$\frac{-N_2}{h}$	$\frac{\partial N_2}{\partial y}$	0	$\frac{N_3}{h}$	0	$\frac{-N_3}{h}$	$\frac{\partial N_3}{\partial y}$	0	$rac{N_4}{h}$	0	$rac{-N_4}{h}$	$\frac{\partial N_4}{\partial y}$

Частные производные от функций формы записываются в виде:

$$\frac{\partial N_1}{\partial x} = -\frac{1}{ab} \left(\frac{b}{2} - y \right); \quad \frac{\partial N_2}{\partial x} = \frac{1}{ab} \left(\frac{b}{2} - y \right); \quad \frac{\partial N_3}{\partial x} = \frac{1}{ab} \left(\frac{b}{2} + y \right); \quad \frac{\partial N_4}{\partial x} = -\frac{1}{ab} \left(\frac{b}{2} + y \right); \\ \frac{\partial N_1}{\partial y} = -\frac{1}{ab} \left(\frac{a}{2} - x \right); \quad \frac{\partial N_2}{\partial y} = -\frac{1}{ab} \left(\frac{a}{2} + x \right); \quad \frac{\partial N_3}{\partial y} = \frac{1}{ab} \left(\frac{a}{2} + x \right); \quad \frac{\partial N_4}{\partial y} = \frac{1}{ab} \left(\frac{a}{2} - x \right).$$

Разрешающие уравнения будут получены исходя из вариационного принципа Лагранжа. Потенциальная энергия деформации трехслойной пластины с учетом ползучести определяется следующим образом:

$$\Pi = \frac{1}{2} \int_{A} t^{\mu} (\sigma_{x}^{\mu} \varepsilon_{x}^{\mu} + \sigma_{y}^{\mu} \varepsilon_{y}^{\mu} + \tau_{xy}^{\mu} \gamma_{xy}^{\mu}) + t^{e} (\sigma_{x}^{e} \varepsilon_{x}^{e} + \sigma_{y}^{e} \varepsilon_{y}^{e} + \tau_{xy}^{e} \gamma_{xy}^{e}) + h \Big[\tau_{zx}^{e} (\gamma_{zx}^{e} - \gamma_{zx}^{e*}) + \tau_{zy}^{e} (\gamma_{zy}^{e} - \gamma_{zy}^{e*}) \Big] dA,$$
(4)

где γ_{zx}^{c*} , γ_{zy}^{c*} — деформации ползучести заполнителя.

Выражение (4) можно переписать в виде:

$$\Pi = \frac{1}{2} \int_{A} \{N\}^{T} \left(\{\varepsilon\} - \{\varepsilon^{*}\}\right) dA = \frac{1}{2} \int_{A} \{N\}^{T} \left([B]\{U\} - \{\varepsilon^{*}\}\right) dA,$$
(5)

Γ,

где
$$\{\varepsilon^*\} = \{0 \ 0 \ 0 \ 0 \ 0 \ \gamma_{zx}^{c*} \ \gamma_{zy}^{c*}\}^T$$
 — вектор деформаций ползучести,
 $\{N\}^T = \{N_x^H \ N_y^H \ N_{xy}^H \ N_x^s \ N_y^s \ N_{xy}^s \ Q_{zx} \ Q_{zy}\}$ — вектор внутренних усилий.

$$N_{x}^{h(6)} = \sigma_{x}^{h(6)} \cdot t^{h(6)}, \quad N_{y}^{h(6)} = \sigma_{y}^{h(6)} \cdot t^{h(6)}, \quad N_{xy}^{h(6)} = \tau_{xy}^{h(6)} \cdot t^{h(6)}, \quad Q_{zx} = \tau_{zx}^{c} \cdot h, \quad Q_{zy} = \tau_{zy}^{c} \cdot h.$$

Связь между деформациями и внутренними усилиями имеет вид:

Nº3(6) 2017

$$\{N\} = [D](\{\varepsilon\} - \{\varepsilon^*\}) = [D]([B]\{U\} - \{\varepsilon^*\}),$$
(6)

где [D] — блочная матрица упругих постоянных.

$$[D] = \begin{bmatrix} [D^n] \\ & [D^s] \end{bmatrix}$$

где $[D^{e^{(n)}}] = \frac{Et^{e^{(n)}}}{1-v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1-v)/2 \end{bmatrix}, \quad [D^3] = G_3 h \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad G_3$ — модуль сдвига заполнителя.

Подставив (6) в (5), получим:

$$\Pi = \frac{1}{2} (\{U\}^{T} \int_{A} [B]^{T} [D] [B] dA \{U\} - \{U\}^{T} \int_{A} [B]^{T} [D] dA \{\varepsilon^{*}\} - \{\varepsilon^{*}\}^{T} \int_{A} [D] [B] dA \{U\}$$

+ $\int_{A} \{\varepsilon^{*}\}^{T} [D] \{\varepsilon^{*}\} dA = \frac{1}{2} \{U\}^{T} \int_{A} [B]^{T} [D] [B] dA \{U\} - \{U\}^{T} \int_{A} [B]^{T} [D] dA \{\varepsilon^{*}\} + \frac{1}{2} \int_{A} \{\varepsilon^{*}\}^{T} [D] \{\varepsilon^{*}\} dA$

Полная энергия представляет разность между потенциальной энергией деформации и потенциалом внешних сил:

 $\Im = \Pi - A$, где $A = \{U\}^T \{F\}, \{F\}$ — вектор внешних узловых сил.

Дифференцируя полную энергию по вектору узловых перемещений получим:

$$\frac{\partial \mathcal{G}}{\partial \{U\}} = [K]\{U\} - \{F\} - \{F^*\} = 0,$$

где $[K] = \int_{A} [B]^{T} [D] [B] dA$ — матрица жесткости, $\{F^{*}\} = \int_{A} [B]^{T} [D] dA \{\varepsilon^{*}\}$ — вклад деформаций ползучести в правую часть системы линейных алгебраических уравнений МКЭ.

Точные выражения для коэффициентов матрицы [*K*] и вектора $\{F^*\}$ были получены при помощи функций для работы с символьными переменными пакета Matlab. Вектор $\{F^*\}$ имеет вид:

$$\{F^*\} = \begin{cases} \{F_1\} \\ -\frac{G_3h}{2} \left(a\gamma_{zy}^{c*} + b\gamma_{zx}^{c*}\right) \\ \{F_1\} \\ \frac{G_3h}{2} \left(-a\gamma_{zy}^{c*} + b\gamma_{zx}^{c*}\right) \\ \{F_1\} \\ \frac{F_1}{2} \left(a\gamma_{zy}^{c*} + b\gamma_{zx}^{c*}\right) \\ \{F_1\} \\ \frac{G_3h}{2} \left(a\gamma_{zy}^{c*} + b\gamma_{zx}^{c*}\right) \\ \{F_1\} \\ \frac{G_3h}{2} \left(a\gamma_{zy}^{c*} - b\gamma_{zx}^{c*}\right) \end{cases} \end{cases}, \text{ rge } \{F_1\} = \frac{abG_3}{4} \begin{cases} \gamma_{zx}^{c*} \\ \gamma_{zy}^{c*} \\ -\gamma_{zy}^{c*} \\ -\gamma_{zy}^{c*} \end{cases}$$

Матрица жесткости здесь не приводится ввиду ее громоздкости.

Результаты и их обсуждение. Был выполнен расчет трехслойной прямоугольной шарнирно опертой по контуру плиты при следующих исходных данных: толщина плиты h = 8 см, модуль упругости обшивок $E = 2 \cdot 10^5$ МПа, коэффициент Пуассона обшивок v = 0.3, толщина обшивок $t^e = t^\mu = 1,5$ мм, модуль сдвига заполнителя $G_3 = 2.5$ МПа, размеры плиты a = b = 3 м, на

Nº3(6) 2017

пластину действует равномерно распределенная по площади нагрузка $q = 2 \kappa \Pi a$. В качестве закона ползучести использовалось уравнение линейной теории наследственности:

$$G_{_{3}}\gamma_{i} = \tau_{i} + \int_{-\infty}^{i} \tau_{i}K(t-\tau)d\tau, \quad i = (xz, yz).$$
(7)

Ядро ползучести принималось экспоненциальным:

$$K(t-\tau) = C_{_{3}}e^{-\alpha_{_{3}}(t-\tau)}; \quad C_{_{3}} = \alpha_{_{3}} = 0,077\frac{1}{4\alpha}.$$

При экспоненциальном ядре закон ползучести (7) легко представляется в дифференциальной форме:

$$G_{_{3}}\frac{\partial\gamma_{_{i}}}{\partial t} + G_{_{3}}\alpha_{_{3}}\gamma_{_{i}} = \frac{\partial\tau_{_{i}}}{\partial t} + (\alpha_{_{3}} + C_{_{3}})\tau_{_{i}}.$$
(8)

В выражениях (7) и (8) содержатся величины полных деформаций сдвига заполнителя, которые представляют сумму упругих деформаций и деформаций ползучести:

$$\gamma_i = \frac{\tau_i}{G_s} + \gamma_i^*. \tag{9}$$

Используя (9), можно выразить из (8) скорости роста деформаций ползучести:

$$\frac{\partial \gamma_i^*}{\partial t} = \frac{C_3}{G_3} \tau_i - \alpha_3 \gamma_i^*.$$

Расчет велся шаговым методом, деформации ползучести в момент времени $t + \Delta t$ определялись следующим образом:

$$\gamma_i^*(t + \Delta t) = \gamma_i^*(t) + \frac{\partial \gamma_i^*(t)}{\partial t} \Delta t.$$

Данный метод используется также в работах [4-9].

Принимались следующие граничные условия:

$$x = 0, x = a: w = 0, v'' = v^{e} = 0;$$

$$y = 0, y = b: w = 0, u'' = u^{e} = 0.$$
(10)

На рисунке 2 представлен график роста прогиба в центре плиты.

Nº3(6) 2017

Сплошной линии соответствует решение, полученное авторами методом конечных элементов, штриховой линии — решение при помощи метода конечных разностей по методике, изложенной в [10]. При t = 0 результаты совпадают, а при $t \to \infty$ отличаются на 1,83%.

Напряжения в общивках и заполнителе в процессе ползучести не меняются. Распределение напряжений σ_x^{μ} и τ_{xy}^{μ} в нижней общивке приведено соответственно на рисунках 3 и 4.

Рис. 3. Распределение нормальных напряжений в нижней обшивке

Рис. 4. Распределение касательных напряжений в нижней обшивке

Напряжения в верхней обшивке при граничных условиях (10) по абсолютному значению совпадают с напряжениями в нижней обшивке.

Распределение касательных напряжений в заполнителе приведено на рис. 5.

Рис. 5. Распределение касательных напряжений в заполнителе

Выводы. Полученные уравнения применимы при произвольных законах ползучести заполнителя, в том числе и нелинейных. Правильность уравнений и достоверность результатов подтверждена сравнением с решением на основе метода конечных разностей. Установлено, что при линейном законе ползучести напряжения в общивках и заполнителе в процессе ползучести не меняются.

Библиографический список.

1. Chepurnenko, A. S. Calculation of the Three-layer Shell Taking into Account Creep / A. S. Chepurnenko, L. R. Mailyan, B. M. Jazyev // Procedia Engineering. — 2016. — Vol. 165. — P. 990 — 994. Режим доступа: http://dx.doi.org/10.1016/j.proeng. 2016.11.810

2. Расчет трехслойной пологой оболочки с учетом ползучести среднего слоя / В. И. Андреев [и др.] // Вестник МГСУ. — 2015. — №7. — С. 17–24.

3. Расчёт трёхслойной пластинки методом конечных элементов с учётом ползучести среднего слоя / Б. М. Языев [и др.] // Вестник Дагестанского государственного технического университета. — 2014. — №2 (33). — С. 47–55.

4. Чепурненко, А. С. Энергетический метод при расчете на устойчивость сжатых стержней с учетом ползучести / А. С. Чепурненко, В. И. Андреев, Б. М. Языев // Вестник МГСУ. — 2013. — №1. — С. 101–108.

5. Дудник, А. Е. Плоская осесимметричная задача термовязкоупругости для полимерного цилиндра / А. Е. Дудник, А. С. Чепурненко, Н. И. Никора // Инженерный вестник Дона: электрон. науч.-инновац. журн. — 2015. — №1-2. — Режим доступа: http://ivdon.ru/ru/magazine/archive/n1p2y2015/2816

6. Напряженно–деформированное состояние предварительно напряженного железобетонного цилиндра с учетом ползучести бетона / Б. М. Языев [и др.] // Научное обозрение. — 2014. — №11, ч. 3. — С. 759–763.

7. Напряженно–деформированное состояние короткого внецентренно сжатого железобетонного стержня при нелинейной ползучести / И. В. Юхнов [и др.] Научное обозрение. — 2014. — №8, ч. 3. — С. 929–934.

8. Andreev, V. I. Energy method in the calculation stability of compressed polymer rods considering creep / V. I. Andreev, A. S. Chepurnenko, B. M. Yazyev // Advanced Materials Research. — 2014. — T. 1004-1005. — C. 257-260.

9. Козельская, М. Ю. Расчёт на устойчивость сжатых полимерных стержней с учётом температурных воздействий и высокоэластических деформаций [Электронный ресурс] / М. Ю. Козельская, А. С. Чепурненко, С. В. Литвинов // Научно–технический вестник поволжья. — 2013. — №4. — С. 190–194. — Режим доступа: http://ntvp.ru/files/NTVP_4_2013.php

10. Andreev, V. I. On the bending of a thin polymer plate at nonlinear creep / V. I. Andreev, B. M. Yazyev, A. S. Chepurnenko // Advanced Materials Research. — 2014. — T. 900. — C. 707-710.